
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 2, FEBRUARY 1992 371

Simple and Efficient Finite-Elen~ent Analysis of

Microwave and Optical Waveguides
Masanori Koshiba, Senior Member, IEEE, and K.azuhiro Inoue

Abstrac&–A simple and efficient finite-clement method for the

analysis of microwave and optical waveguiding problems is for-

mulated using three components of the electric or magnetic
field. In order to eliminate spurious solutions, edge elements

are introduced. In theedge element approach the nodal param-
eters are not limited to the magnetic field ;as in the conventional

three-component formulation for the dielectric waveguiding
problem. An eigenvalue equation derived here involves only the

edge variables in the transversal plane and can provide a direct
solution for the propagation constant. To show the vailidity and

usefulness of this approach, computed results are illustrated

for microstrip transmission lines and dielectric waveguides.

I. INTRODUCTION

T O. RIGOROUSLY evaluate propagation characteris-

tics of microwave and optical wa.veguides with arbi-

trarily shaped cross sections, vectorial wave analysis is

necessary, and different types of the vector finite-element

method (FEM) have been developed. Of the various for-

mulations, the FEM using full vector H field is quite suit-

able for a wide range of practical, complicated problems

[1]-[10]. This approach has been widely used for various

dielectric waveguiding structures in microwave, milli-

meter-wave, and optical wavelength regions, and recently

has been utilized as the waveguide solver of CAD pack-

ages [7]. The most serious problem :associated with this

approach is the appearance of spurious solutions. The

penalty function method [3], [4], [6], [7] has been used

to cure this problem, but in this technique an arbitrary

positive constant, called the penalty coeilicient, is in-

volved and the accuracy of solutions depends on its mag-

nitude. Furthermore, in the full vectorial formulation [l]–

[10] the propagation constant is first given as an input

datum, and subsequently the operating frequency is ob-

tained as a solution. More recently, ieveral methods for

solving directly the propagation constant have been de-

veloped, but each has its drawback, e.g., a large number

of field components [11]–[13], consideration of the ad-

joint field which does not correspond~ to the actual elec-

tromagnetic field [14], or the need to estimate the line

integral in the variational expression 1[15].
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In this paper ;asimple and efficient FEM for the analysis

of microwave and optical waveguiding problems is for-

mulated using Ithree components of the electric or mag-

netic field. In order to eliminate spurious solutions and to

treat arbitrarily shaped waveguides, triangular edge ele-

ments are introduced. An eigenvalue equation derived

here involves cmly the edge variables in the transversal

plane and can provide a direct solution for the propagation

constant. To show the validity and usefulness of this ap-

proach, examples are computed for microstrip transmis-

sion lines on isotropic or anisotropic substrates, dielectric

rectangular waveguides, and equilateral triangular core

waveguides.

II. BASIC EQUATIONS

We consider a dielectric waveguide with a diagonal

permittivity tensor and assume that the electromagnetic

field in the waveguide varies as exp [j(cot – Oz)], where

t is the time, z is the propagation direction, a is the an-

gular frequency, and /3 is the propagation constant in the

z direction.

From Maxwell’s equations the following vectorial wave

equation is derived:

v x ([p]v x @) –k; [q]rj =0 (1)

with

[1
pxoo

[P]= OP, O (2)

Oopz

[1
qxoo

[d= o qyo

Ooqz

(3)

where k. is the free-space wavenumber, @ denotes either

E or H, and the components of [ p] and [q] are given by

Px’=Py=Pz=~2
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px = I/crx = l/n:,

P? = l/%Y = l/~;>

p: = l/~,Z = l/n~,

%=%=%=1 for ~ = II. (5)

Here e,X, 6,,, 6,Care the relative permittivities in the x, y,

z directions, respective y, and Ml, nY, n: are the refractive
indices in the x, y, z directions, respectively.

The functional for (1) is given by

F=
!!

[(v x @)*

o

“ ([PIV x 4) – k;[q]d” “ @]dxdy (6)

where 0 is the waveguide cross section and the asterisk

denotes complex conjugate.

III. FINITE ELEMENT FORMULATION

The electromagnetic fields have to be tangentially con-

tinuous across material interfaces. In the edge element [5],

[8]-[10], [16] -[20], the tangential continuity can be
straightforwardly imposed. Hano [5] has developed the

FEM with rectangular edge elements for solving inho-

mogeneous waveguiding problems. Kikuchi [16], on the

other hand, has utilized triangular edge elements to treat

arbitrarily shaped waveguides, but in [16] only the ho-

mogeneous hollow waveguides are analyzed.

In this section we apply the triangular edge element

[16], which is different from that used by Hano [8], to

inhomogeneous waveguiding problems.

A. Triangular Edge Element

The six nodes described in the triangular edge element

consist of the three corner and three side points as shown

in Fig. 1. The corner points 1 to 3 are for the axial com-

ponent 0, (-E, or Hz), while the side points 4 to 6 are for
the tangential component r$t (Ef or Hf ).

The axial component ~, is approximated by a complete

polynomial of first order:

with

(8)

where {0, }, is the nodal axial-field vector for each ele-

[ 1[
al b[ c1 1-

1— az b2 C2 x
2A=

a3 b3 C3 yA

ment, {N}- is the ordinary shape function vector for the

linear triangular element, L~’s (k = 1, 2, 3) are the area

coordinates, and the area of the element, A,, and the coef-

ficients ak, b~, c~ are given by

111

2A= = x, X2 X3 (9)

YI Y2 Y3

L

Fig. 1. Triangular edge element.

ak = Xlym — Xmyl (lo)

bk = y, – Y,. (11)

c~ = Xm — xl. (12)

Here xk, y~ (k = 1, 2, 3) are the Cartesian coordinates of

the corner points 1 to 3 of the triangle and the subscripts

k, 1, m always progress modulo 3, i.e., cyclically around

the three vertices of the triangle.

The transverse components o, (~, or HX) and +Y (EY or

HY ) are approximated by a linear function of y and x, re-

spectively:

& = {u(Y) }T{@, }, = {u} T{@, )c (13)

A = {w)T{ff4}e = {~} T{4b}e (14)

with

(15)[1
al + (71y

{u} = a, + Gy

i73 + c3y

[1

b, – t,x

{v} = 52 – qx (16)

63 – c~x

where { ~~ }, is the edge variables in the transversal plane

for each element. {U} and {V} are the shape function

vectors for the triangular edge element, and the coeffi-

cients ~k, & (?kare given by

~k = [(y~+3c0s 8,.+3 ‘x,. +qsin6,,, +3) sin 81+3

–(Y1+3COS 61+3 –x(~3sin 61+j)sin0~+3]/A

(17)

Gk = [(y/+ 3cos o/+3 –xl+3sin 01+3) cos(3~+3

–(Y~+SCOS6~+q – x~+3sine~+3)cOsel+31/A

(18)

dk = (COS61+3 sin0~+3 – cos 13~+3 sin 01+3)/A (19)
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with

O s dk+3 = tan-l {(Yk - Yl)/(% “- %)} < ~ (20)

3

A = ~~1 (yk+3cos Ok+3 –x~+3sir16~+3)

“ (cos f31+3 sin O~+3 – cos t9n+3 sin 01+3). (21)

Here xk +s, yk + 3 (k = 1, 2, 3) are the Cartesian coordi-
nates of the side points 4 to 6 of the triangle.

Note that the tangential component, +, = OX cos 0 +

OYsin 6, is continuous along the interelement boundaries

and is constant on each side of triangles.

B. Finite-Element Discretization

Dividing the waveguide cross section into a number of

edge elements, we expand the transverse components 4X,

@Yand the axial component +, in each element as

with

(23)

[

{u} {c”} {0}
‘N]= {o} {0} j{lv} 1

(24)

where {0} is a null vector.

Substituting (22) into (6), from the variational principle

we obtain the following eigenvalue problem:

[K] {()} - kg[kf] {c#)} = {o} (25)

with

‘Kl=[:: %1
.

~ jj [B] * [Pl[B]TdXdY (26)
e

e

‘“l=[%]:.11
e

where {~} is the global field vector and the submatrices

of [K] and [M] are given by

[Kt,] = ~
!!

[Px@2{~} {~}’ +

e

+ 4Pz{uy} {UY}TI dxdy

PyD2{~~}{u}T

(29a)

V&l = [LIT

e

+py~{u} {NX}T] dXdy (29b)

[K,,] = ~ ~j [pX{NY} {NY}’ +py{N1} {NX}T] dldy
e

e

(29c)

[J’&] = x !![!?x{u){u]’ + !?y{n {v’] a!xdy
e

e

(30a)

[Wzl = ~ j~ q,{N} {N} ’fidy.
(30b)

e
e

Here {NX} = d{N}/&, {Ny) = d{N}/dy, {U, } =

d{ U}/dy, and {VX} = d{ V}/dx.

Equation (25) may be rewritten as

K,,] {A} ‘- D[KJ {4, } - B2[M,1 {d%} = {0]

(31a)

-(3[KZ] {~,}+ [Ku] {@z} = {0}

(31b)

with

[K[,] = ~
‘[l

r%~:{~} {~}’+ qyk; {v} {v}’

e

– 4p, {uy} {UY}T] a!xdy (32a)

[q = [&r

.
; ~ \ [px{~} {NY}T +p, {~} {Nx}’] dXdy

e

(32b)

- [M,t] = ~ u,[P.{~} {~}T +Py{u) {u}T] a!xdy.

e
(33)

Note that the submatrices in (32) and (33) are different

from those in (29) and (30).

Substituting (3 lb) into (3 la), we obtain the following

final eigenvalue problem:

[K,] {4%} -62 [z,] {d%} = {o\ (34)

with

[fm:l = [M,,] + [K,z] [Kul “ [K,,] . (35)
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Note that (34) will give a solution directly for the propa-

gation constant and the corresponding field distribution,

and involves only the edge variables in the transversal

plane {@t }. But it is important to point out the price paid

for this: a matrix inversion has to be performed and the

sparsity of the matrices is destroyed.

The integrals necessary to construct element matrices

are summarized in the Appendix.

IV. NUMERICAL EXAMPLES

First, we consider a microstrip transmission line in Fig.

2 and subdivide one-half of the waveguide cross section

into edge elements, where W = 1.27 mm, t = O, h =

1.27 mm, X = 12.7 mm, and Y = 12.7 mm. Fig. 3(a)

and (b) show the propagation characteristics for the first

two modes of a microstrip on an isotropic substrate with

e, = 8.875 and for those of a microstrip on an anisotropic

substrate with ~,, = ~,Z = 9.4 and ~,Y = 11.6, respec-

tively, where the number of elements IV~ = 364, the num-

ber of corner points IVc = 210, and the number of side

points iV~ = 573. Our results agree well with previously

reported ones for both isotropic [21]–[23] and anisotropic

[23], [24] cases.

Next, we consider a dielectric rectangular waveguide

in Fig. 4, where nl and n2 are the refractive indices of the

core and cladding regions, respectively. Because of the

twofold symmetry of the system, we subdivide only one-

quarter of the waveguide cross section into edge ele-

ments. For simplicity, assuming the artificial boundaries

x = fX/2 and y = + Y/2 far from the core region, the

original unbounded structure is replaced by a correspond-

ing bounded one. Here, the conditions for the perfect

electric or perfect magnetic conductors are imposed suit-

ably on the artificial boundaries, so as not to restrict the

dominant electromagnetic field component there. Fig. 5

shows the propagation characteristics of this waveguide,

where W = 2t, X = 10f, Y = 5t, NE = 320, Nc = 187,

N~ = 506, and the normalized frequency v and the nor-

malized propagation constant b are defined as

(37)

Our results agree well with the results of the point match-

ing method [25]. The results of the Marcatili’s method
[26] deviate from those of the point matching method at

lower frequencies.

Lastly, we consider an equilateral triangular core wave-

guide in Fig. 6 and subdivide one-half of the waveguide

cross section into edge elements. Fig. 7 shows the prop-

agation characteristics for the E~l mode of this wave-

guide, where X = 6t, Y = 5t, NE = 360, Nc = 208, and

N~ = 567. The finite-element solutions of edge element

formulation agree well with those of axial-field (Ez and

Hz) formulation [27] and those of full vector H-field for-

mulation with the penalty coefficient s = 1 [28].

x

S.=1

w
l—————

‘r
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Fig. 2. Shielded microstrip transmission line.
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Fig. 3. Propagation characteristics of a microstrip transmission line. (a)
Isotropic substrate. (b) Anisotroplc substrate,

Note that the spurious solutions are included in the fi-

nite-element solutions of axial-field formulation. To avoid

confusion, such spurious solutions are not shown in Fig.

7(a). In the edge element method spurious solutions do

not appear any where. Furthermore, the newly derived ei-

genvalue problem (34) does not produce zero eigenvalues

[5], [8]-[10] which are present in (25). The convergence

of solutions has been checked by increasing the number
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Fig. 4. Dielectric rectangular waveguide.
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Fig. 5. Propagation characteristics of a dielectric rectangular waveguide,
(a) E~l and E~, modes (n, = 1.05, n2 = 1.0). (b) J5~l and E], modes (n,
= 1.05, nz = 1.0). (c) E~l and E~[ modes (n, = 1.5, nz = 1.0).
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Fig. 6. Equilateral triangular core waveguide.
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Fig. 7. Propagation characteristics for the E ~1 mode of an equilaterzd tri-
angular core waveguide. (a) n, = 1.5085 and n2 = 1.50. (b) n, = 1.5 and

n* = 1.0.

of elements and the values of .X and Y for the influence of

the artificial boundaries to be negligible.

V. CONCLUSION

A simple and efficient finite-element method for the

analysis of microwave and optical waveguiding problems
was formulated using three components of the electric or

magnetic field. In order to eliminate spurious solutions

and to treat arbitrarily shaped waveguides, triangular edge

elements were utilized. An eigenvalue equation derived

here involves only the edge variables in the transversal
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plane and can provide a direct solution for the propagation

constant. The application of this approach to microstrip

lines and dielectric waveguides was also discussed.

This approach can be applied easily to the waveguides

including lossy and/or active media, and to the aniso-

tropic waveguides with reflection symmetry [14], [15].

APPENDIX

The integrals necessary to construct element matrices

are calculated as follows:

[!! 1
{u} {u} TdXdy

M
e

= A=d~d/ + ‘4eyc(t2~d/ +

1
+ ~A.cke[(y; + y;

[!!
{v} {V} ’a!xdy

e 1kl

– Ae6J~ – A,xc (Fkc, +—

~kti[ )

+ y; + 9y:)

‘6‘k 1)

—

[!s{Uy} {U,}’dxdy I!d
e

—— [H{v,} {~l}’dxdy
1 kl

e

. .

[s! 1

{Uy} {~,}’~dy

kl
e

——

-[s!
{v. } {uy}’~dy 1kl

e

[!s 1{U} {N, }’a!xdy = ; (d, + ~Lyc)bJ

e u

[1
211

!!
{N}{N}’dxdy=~ 1 2 1

e 112

(Al)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

[1
c; c, C2 c1C3

!J
{N, } {Nv}T~@ = & C,C2 C; C2 C3

e c, C3 C2C3 C:

(A8)

with

xc = (x, + X2 + x3)/3 (A9)

Y. = (Y1 + y2 + y3)/3 (A1O)

where [“]k~(kl = 11, 12, - s o , 33) indicates the (k, 1)

component of the matrix [”].
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