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Simple and ,Efﬁcient Finite—Elehjent Analysis of
 Microwave and Optical Waveguides

Masanori Koshiba, Senior Member, IEEE, and Kazuhiro Inoue

Abstract—A simple and efficient finite-element method for the
analysis of microwave and optical waveguiding problems is for-
mulated using three components of the electric or magnetic
field. In order to eliminate spurious solutions, edge elements
are introduced. In the-edge element approach the nodal param-
eters are not limited to the magnetic field as in the conventional
three-component formulation for the dielectric waveguiding
problem. An eigenvalue equation derived here involves only the
edge variables in the transversal plane and can provide a direct
solution for the propagation constant. To show the vailidity and
usefulness of this approach, computed results are illustrated
for microstrip transmission lines and dielectric waveguides.

1. INTRODUCTION

0. RIGORQUSLY evaluate propagation characteris-
tics of microwave and optical waveguides with arbi-
trarily shaped cross sections, vectorial wave analysis is
~ necessary, and different types of the vector finite-element
method (FEM) have been developed. Of the various for-
mulations, the FEM using full vector H field is quite suit-
able for a wide range of practical, complicated problems
. [1]-[10]. This approach has been widely used for various
dielectric waveguiding structures in microwave, milli-
meter-wave, and optical wavelength regions, and recently
has been utilized as the waveguide solver of CAD pack-
ages [7]. The most serious problem associated with this
approach is the appearance of spurious solutions. The
penalty function method [3], [4], [6], [7] has been used
to cure this problem, but in this technique an arbitrary
positive constant, called the penalty coefficient, is in-
volved and the accuracy of solutions depends on its mag-
nitude. Furthermore, in the full vectorial formulation [1]-
[10] the propagation constant is first given as an input
datum, and subsequently the operating frequency is ob-
tained as a solution. More recently, several methods for
solving directly the propagation constant have been de-
veloped, but each has its drawback, e.g., a large number
of field components [11]-[13], consideration of the ad-
joint field which does not correspond to the actual elec-
tromagnetic field [14], or the need to estimate the line
integral in the variational expression [15].
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In this paper a simple and efficient FEM for the analysis
of microwave and optical waveguiding problems is for-
mulated using three components of the electric or mag-
netic field. In order to eliminate spurious solutions and to
treat arbitrarily shaped waveguides, triangular edge cle-
ments are introduced. An eigenvalue equation derived
here involves only the edge variables in the transversal
plane and can provide a direct solution for the propagation
constant. To show the validity and usefulness of this ap-
proach, examples are computed for microstrip transmis-

_sion lines on isotropic or anisotropic substrates, dielectric

rectangular waveguides, and equilateral triangular core
waveguides.

II. Basic EQUATIONS |

We consider a dielectric waveguide with a diagonal
permittivity tensor and assume that the electromagnetic
field in the waveguide varies as exp [ j(wt — (z)], where
t is the time, z is the propagation direction,  is. the an-
gular frequency, and § is the propagation constant in the
z direction.

From Maxwell’s equations the following vectorial wave
equation is derived:

V X ([plV X ¢) — kilqlé =0 )

with
[p 0 0]
[pl=]0 p, O @
L0 0 p.
(g 0 0]
[gl =0 g, O 3)
L0 0 ¢

where k; is the free-space wavenumber, ¢ denotes either
E or H, and the components of [ p] and [g] are given by

Px :ipy =p. = L
qx = er = nX’
dy = €&y = Ny,

q, = €, = n% fore = E @
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P = 1/Er)c = 1/’1§,
py = 1/e, = 1/n3,
p: = 1/6r: = l/l’l?,
G =q, =q. =1

Here ¢,,, ¢,,, €, are the relative permittivities in the x, y,
z directions, respectively, and n,, n,, n_ are the refractive
indices in the x, y, z directions, respectively.

The functional for (1) is given by

for ¢ = H. 5)

F = SS[(VX@*

Q
“((PIV X ¢) — kplglo* - ¢ldxdy  (6)

where @ is the waveguide cross section and the asterisk
denotes complex conjugate.

III. Finite ELEMENT FORMULATION

The electromagnetic fields have to be tangentially con-
tinuous across material interfaces. In the edge element [5],
[8]-[10], [16]-[20], the tangential continuity can be
straightforwardly imposed. Hano [5] has developed the
FEM with rectangular edge elements for solving inho-
mogeneous waveguiding problems. Kikuchi [16], on the
other hand, has utilized triangular edge elements to treat
atbitrarily shaped waveguides, but in [16] only the ho-
mogeneous hollow waveguides are analyzed.

In this section we apply the triangular edge element
[16], which is different from that used by Hano [8], to
inhomogeneous waveguiding problems.

A. Triangular Edge Element

The six nodes described in the triangular edge element
consist of the three corner and three side points as shown
in Fig. 1. The corner points 1 to 3 are for the axial com-
ponent @, (E, or H_), while the side points 4 to 6 are for
the tangential component ¢, (E, or H,).

The axial component ¢_ is approximated by a complete
polynomial of first order:

o, = j{N&x, W} {o.}. = i{N}" {9, }. (7
with

Ll aj b] Cq 1
(N} =|L|= Z_/Z a by o||x ¥
Ly a3 by o] Ly

where {¢,}, is the nodal axial-field vector for each ele-
ment, {N} is the ordinary shape function vector for the
linear triangular element, L;’s (k = 1, 2, 3) are the area
coordinates, and the area of the element, 4,, and the coef-
ficients a,, b, ¢, are given by

1 1 1
2Ae =X X2 X3 (9)
Yi Y2 )3

y
A

Fig. 1. Triangular edge element.

QG = X ¥m — X1 (10)
bk =Y = Ym (11)
L = X, — Xp. (12)

Here x;, v, (k = 1, 2, 3) are the Cartesian coordinates of
the corner points 1 to 3 of the triangle and the subscripts
k, I, m always progress modulo 3, i.e., cyclically around
the three vertices of the triangle.

The transverse components ¢, (E, or H,) and ¢, (E, or
H,) are approximated by a linear function of y and x, re-
spectively:

¢ = (UM} {$:}c = (U} {s.}. (13)
¢y = {(V0} {6} = {(V}T{6:}e (14)
with
Fa, + &,y
{U}=|a + &y (15)
Ld; + &3y |
b, — &1x]
(VY =1|b, — &x (16)
_l~)3 — C3x |

where {¢,}, is the edge variables in the transversal plane
for each element. {U} and {V'} are the shape function
vectors for the triangular edge element, and the coeffi-
cients @, by, ¢, are given by

G = [(Ym+3€080,,3 = X, 13806, ,3)sinb,;
— (V143008 0,13 — x438in0,,3) sin §,,,5]/A
a17)
b = [(y14+3 €08 0,45 — X3 8in 0;43) cos 0, 3
= Xy +38in 0,,,3) cos 6,,3]/A
(18)
(19)

—(Ym+3€08 0,13

& = (cos 0, 3sinf,,3 —cosb,,;sinb,,.5)/A
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with
0<bs=tan" {(y— W)/ -x)} <7 (20
3\
A= k§1 (Yie+3 €08 Op 3 — Xy 8in 64 5)
* (cos 0,,5sin6,,3 —cos b, ssinh;,3). (21

Here x; 43, yi+3 (kK = 1, 2, 3) are the Cartesian coordi-
nates of the side points 4 to 6 of the triangle.

Note that the tangential component, ¢, = ¢, cos 6 +
#, sin 8, is continuous along the interelement boundaries
and is constant on each side of triangles.

B. Finite-Element Discretization

Dividing the waveguide cross section into a number of
edge elements, we expand the transverse components ¢,,
¢, and the axial component ¢, in each element as

¢ = [N1"{o}, 22)
with
{¢t}e:'
. = (23)
9} [{@}e |
{uy {v} {0}}
= 24
] {{0} ) v} @

where {0} is a null vector. 4
Substituting (22) into (6), from the variational principle
we obtain the following eigenvalue problem:

[K1{8} — koIM1 {9} = {0} (25)
with
[[ W1 K] }
=2 N [B] * [p] [B]" dx dy (26)
=[[M,,1 0] ]
[M,.]
=Z”[N]*[q1 N1 dx dy @7
iB{Vvy —jB{U} —-{U,} + {V,
[B]=[]ﬁ{} {B{} {U,} +{ }} 8)
ANy} —j{N} {0}

where {¢} is the global field vector and the submatrices
.of [K] and [M] are given by

w1 =3 || trs2 01 017+ 870y 0y

e

+4p{U,} {U,}"] dx dy (29a)

[K.] = [K,]"

-2 ([ ey vy

-4

+ pyB{U} {N}71dx dy (29b)

el = 3 | [ 1o} 00} + oy 03 (N3 ey

e

(290)
1 = || o o+ gy i @ e
’ (302)

[M] = 2 SS g.{N} (N} dx dy. (30b)

Here {N,} = 9{N}/ox, {N,} = a{N}/0y, {U}
d{U}/dy, and {V,} = d{V}/dx
Equation (25) may be rewritten as

[Kq] {6} ~ BIK,]{¢.} — B°[M,]{o,} = {0}
(31a)
_B[Kzt] {¢t}+ [Kzz] {¢z} = {O}
(31b)-
with

k1 = 3 || sy 037 + gy ry7

- 4pz{Uy} {Uy}T] dxa'y
[K.] = [K,]"

(32a)

- 2 H [P AV} {N,}T + p, {U} {N,}7] dx dy

€

(32b)
% = 3 [ | tgkavy vy - puty vy

— Dy {Nx} {Nx}T] dx dy (32C)
=2 |y v s py o e wy

‘ | 33) -
Note that the submatrices in (32) and (33) are different
from those in (29) and (30).

Substituting (31b) into (31a), we obtam the followmg
final eigenvalue problem:

» [Ktt] {¢t} - B [Mtt] {d)t} = {0} (34)
with

[M,] = [M,] + [K,.] [K.]""[K]. (35)
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Note that (34) will give a solution directly for the propa-
gation constant and the corresponding field distribution,
and involves only the edge variables in the transversal
plane {¢,}. But it is important to point out the price paid
for this: a matrix inversion has to be performed and the
sparsity of the matrices is destroyed.

The integrals necessary to construct element matrices
are summarized in the Appendix.

IV. NuMERICAL EXAMPLES

First, we consider a microstrip transmission line in Fig.
2 and subdivide one-half of the waveguide cross section
into edge elements, where W = 1.27 mm, ¢t = 0, h =
1.27 mm, X = 12.7 mm, and Y .= 12.7 mm. Fig. 3(a)
and (b) show the propagation characteristics for the first
two modes of a microstrip on an isotropic substrate with
€, = 8.875 and for those of a microstrip on an anisotropic
substrate with ¢, = ¢, = 9.4 and ¢, = 11.6, respec-
tively, where the number of elements Ny = 364, the num-
ber of comer points No = 210, and the number of side
points Ng = 573. Our results agree well with previously
reported ones for both isotropic [21]}-[23] and anisotropic
[23], [24] cases.

Next, we consider a dielectric rectangular waveguide
in Fig. 4, where n; and n, are the refractive indices of the
core and cladding regions, respectively. Because of the
twofold symmetry of the system, we subdivide only one-
quarter of the waveguide cross section into edge ele-
ments. For simplicity, assuming the artificial boundaries
x = +X/2and y = +Y/2 far from the core region, the
original unbounded structure is replaced by a correspond-
ing bounded one. Here, the conditions for the perfect
electric or perfect magnetic conductors are imposed suit-
ably on the artificial boundaries, so as not to restrict the
dominant electromagnetic field component there. Fig. 5
shows the propagation characteristics of this waveguide,
where W = 2¢, X = 101, Y = 51, N = 320, N- = 187,
Ng = 506, and the normalized frequency v and the nor-
malized propagation constant b are defined as

v = kotvn? — n3/x (36)
(6 k 2 2
p= Blh) = ma (37)

”%_”2

Our results agree well with the results of the point match-
ing method [25]. The results of the Marcatili’s method
[26] deviate from those of the point matching method at
lower frequencies.

Lastly, we consider an equilateral triangular core wave-
guide in Fig. 6 and subdivide one-half of the waveguide
cross section into edge elements. Fig. 7 shows the prop-
agation characteristics for the E}, mode of this wave-
guide, where X = 61, Y = 5t, N = 360, N = 208, and
Ng = 567. The finite-element solutions of edge element
formulation agree well with those of axial-field (£, and
H_) formulation [27] and those of full vector H-field for-
mulation with the penalty coefficient s = 1 [28].

X
le |
| l__
er=1
Y
w
i,
| —— el SE—
t
Erg, Ery, Erz I h

Fig. 2. Shielded microsirip transmission line.
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Fig. 3. Propagation characteristics of a microstrip transmission line. (a)
Isotropic substrate. (b) Anisotropic substrate.

Note that the spurious solutions are included in the fi-
nite-element solutions of axial-field formulation. To avoid
confusion, such spurious solutions are not shown in Fig.
7(a). In the edge element method spurious solutions do
not appear anywhere. Furthermore, the newly derived ei-
genvalue problem (34) does not produce zero eigenvalues
[5], [8]-[10] which are present in (25). The convergence
of solutions has been checked by increasing the number
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X

Fig. 4. Dielectric rectangular waveguide.
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Fig. 5. Propagation characteristics of a dielectric rectangular waveguide.
(a) E7, and E3; modes (n, = 1.05, n, = 1.0). (b) E7, and E3, modes (n,
= 1.05, n, = 1.0). (¢) E7, and E{, modes (n, = 1.5, n, = 1.0).

Fig. 6. Equilateral triangular core waveguide.
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Fig. 7. Propagation characteristics for the EY, mode of an equilateral tri-
angular core waveguide. (a) n,. = 1.5085 and n, = 1.50. (b) n; = 1.5 and
Ry = 1.0.

of elements and the values of X and Y for the influence of
the artificial boundaries to be negligible.

V. CoONCLUSION

A simple and efficient finite-element method for the
analysis of microwave and optical waveguiding problems
was formulated using three components of the electric or
magnetic field. In order to eliminate spurious solutions
and to treat arbitrarily shaped waveguides, triangular edge
elements were utilized. An eigenvalue equation derived
here involves only the edge variables in the transversal
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plane and can provide a direct solution for the propagation
constant. The application of this approach to microstrip
lines and dielectric waveguides was also discussed.

This approach can be applied easily to the waveguides
including lossy and/or active media, and to the aniso-
tropic waveguides with reflection symmetry [14], [15].

APPENDIX

The integrals necessary to construct element matrices
are calculated as follows:

[} s 1wy asay

e

ki

= A 4,4 + A,y (G, ¢ + &ap)

i A 2 2 2 2
+ —A,66(y1 +y3 +y3 + 9y,)

12 (AD
[| oy v acay
e ki
= A,b.b, — Ax (b + &)
+ 1—12—A85k51(x% + x4+ x4+ %% (A2
|| wywyraa
kl
- T varaa
kil
_ o
= {U»} {Vt} dx d
| . 1kl
] —_—
- = {Vx} {Uy} dXdy
L, Akl
= Aeékfl (A3)
[y oy aa) =tavaon o9
L, kil
_ .
Ty es =1e - awa @9
L, ki
21 1
” {N} {N}dedy=% 1 21 (A6)
¢ 112

ﬁb% ble blb3
SS {N.} {N,}7 dx dy =4iAe bib, b3  bb;
¢ L biby bybs b3
(AT)
_C% €16 (G
[loywyaa=tloe d o
¢ Loy oo c3
(A8)
with
X = (; + x, + x3)/3 (A9)
Ye= 1+ 3 +¥)/3 (A10)

where [*1,(kl = 11, 12, - - -, 33) indicates the (k, [)
component of the matrix [-].
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